Product Code Database
Example Keywords: final fantasy -stitch $78
barcode-scavenger
   » » Wiki: Dog Whelk
Tag Wiki 'Dog Whelk'.
Tag

The dog whelk, dogwhelk, or Atlantic dogwinkle ( Nucella lapillus) is a of , a marine in the family , the rock snails.

Nucella lapillus was originally described by in his landmark 1758 10th edition of Systema Naturae as Buccinum lapillus (the ).


Distribution
This species is found around the coasts of Europe and in the northern west coast of North America. It also can be found in waters along the coasts. This species prefers rocky shores, where it eats and .Colin Little, J. A. Kitching, 1996, The Biology of Rocky Shores, pp. 140-145.


Shell description
The dog whelk shell is small and rounded with a pointed spire and a short, straight (a groove on the underside of the shell) and a deep anal canal. The overall shell shape varies quite widely according to the degree of exposure to of the shore on which a particular population lives but the (the largest section of the shell where the majority of the is located) is usually around 3/4 of the total length of the shell. The aperture is usually crenulated in mature dog whelks, less often in juveniles.

The shell surface can be fairly smooth interrupted only with growth lines, or when the snail is living in more sheltered areas the shell surface can be somewhat rough and lamellose. The surface is spirally corded. The outer lip is dentate and ridged within. The columella is smooth.

The external shell colour is usually a whitish grey, but can be a wide variety of orange, yellow, brown, black, or banded with any combination of these colours. They can even, occasionally, be green, blue, or pink.


Ecology

Habitat
The dog whelk lives on rocky shores, and in estuarine conditions. Climatically it lives between the 0 °C and 20 °C isotherms.


Effects of the habitat
Wave action tends to confine the dog whelk to more sheltered shores, however, this can be counteracted, both by adaptations to tolerate it such as the shell and muscular foot, and by the avoidance of direct exposure to wave action afforded by making use of sheltered in rocky crevices. The preferred substrate material of the dog whelk is solid rock and not , which adds to its problems at lower levels on the shore where is likely to have reduced the stability of the . loss by has to be tolerated (by means of the operculum which holds water in and prevents its escape as ), or avoided (by moving into water or a shaded area).

The peak in dog whelk population density is approximately coincidental with the mid-. It lives in the middle shore. In general it can be said that at high vertical heights on the shoreline the dog whelk is most threatened by factors such as predation from birds and interspecific competition for food, but factors are the primary concern, creating a harsh environment in which it is difficult to survive. At low vertical heights it is biotic factors, such as predation from crabs and intraspecific competition, which cause problems. The upper limit of the range in which the dog whelk is generally found is approximately coincidental with the mean high water line, and the lower limit of the range is approximately coincidental with the mean low water line, so that the vast majority of dog whelks are found on the mid-.

and comparable microhabitats extend the vertical range of such as the dog whelk as they provide a more constant environment, but they are prone to increased because evaporation concentrates dissolved substances. This can create conditions for many species.

The dog whelk can only survive out of water for a limited period, as it will gradually become and die. processes within cells take place in solution, and a decrease in water content makes it impossible for the organism to function properly. In experiments it has been shown that 50% of dog whelks die at 40 °C. The dog whelk has to ammonia directly into water, as it does not have the adaptation possessed by many upper shore species which would allow it to produce for excretion without loss of water. When kept emersed for seven days at a temperature of 18 °C, 100% of dog whelks die, in contrast to many periwinkle species which can lose even more water than the dog whelk (i.e. more than 37% of their total body mass) but survive as a result of their ability to excrete toxic waste products more efficiently.


Feeding habits
Its adaptations include a modified (a toothed structure) to bore holes in the of , complemented by an organ on the foot which secretes a shell-softening chemical. When a hole has been formed chemicals and digestive enzymes are secreted inside the shell to break the soft body down into a 'soup' which can be sucked out with the proboscis. The plates of barnacles can be pushed apart with the proboscis, and the entire individual is eaten in about a day, although larger animals such as mussels may take up to a week to .

Feeding only occurs when conditions are conducive to such an activity, and during these times the dog whelk consumes large quantities of food so that the gut is always kept as full as possible. This allows shelter until more food is required, when resumes. If waves are large or there is an excessive risk of water loss the dog whelk will remain inactive in sheltered locations for long periods.

Mussels have developed a defensive strategy of tethering and immobilising with byssus threads any dog whelks invading their beds, leading to the whelks' starvation.

Nucella lapillus's feeding activity is suppressed on brighter moonlight nights, in order to minimize predation risks. High-intensity ALAN levels reversed the pattern. In fact, N. lapillus would more likely forage when Artificial Light At Night (ALAN) intensities range from 10 to 50 lx, which are way higher than lunar brightness. This allows dog whelks to easily exclude predation risk.


Life cycle


Predators
Predators of the dog whelk include various species of and . Protection against from crabs which attempt to pull the soft body out through the shell aperture can be afforded by growing around the edge of the aperture. Many predators cannot smash the strong shell of an adult dog whelk, but juveniles are vulnerable to attack from many predatory species. and various other birds simply swallow the entire body with its shell, while oystercatchers and various are often capable of crushing or breaking the shells. In the winter they endure more predation from and similar , but in the summer crabs represent a greater threat. In general, the dog whelk can be thought of as being vulnerable to birds when emersed, and to crabs when immersed.


Human use
The dog-whelk can be used to produce red-purple and violet dyes,Whelks and purple dye in Anglo-Saxon England. Carole P. Biggam. Department of English Language, University of Glasgow, Scotland, UK The Archaeo+Malacology Group Newsletter. Issue Number 9, March 2006. [2] like its Mediterranean relations the spiny dye-murex Bolinus brandaris, the banded dye-murex Hexaplex trunculus and the rock-shell Stramonita haemastoma which provided the that the Ancient World valued so highly. mentions that in Britain "whelks are abundant, and a beautiful scarlet dye is extracted from them which remains unfaded by sunshine or rain; indeed, the older the cloth, the more beautiful its colour." Https://sourcebooks.fordham.edu/halsall/basis/bede-book1.asp Bede, Ecclesiastical History of the English People Book 1, Chapter 1.

In Ireland, on the island of , Co. Mayo, archaeologists found a whelk-dyeing workshop, dated to the 7th century AD, complete with a small, presumed vat, and a pile of broken-open dog-whelk shells. Unfortunately, no such workshop is known from Britain for the early medieval period. However, a double-checked trace of bromine, indicating the presence of whelk-dye, has been found on one page of an Anglo-Saxon book known as the Barberini Gospels. This manuscript dates to the late 8th or early 9th century AD, and the whelk dye occurs as a background panel to white lettering at the beginning of St John's gospel. Efforts have also been made to find whelk dye on surviving fragments of Anglo-Saxon textiles, but the chemical analyses so far carried out have proved negative for bromine.Porter, C.A., Chiari, G. and Cavallo, A., 2002. The analysis of eight manuscripts and fragments from the fifth/sixth century to the twelfth century, with particular reference to the use of and identification of "real purple" in manuscripts. In: Van Grieken, R. et al. (eds), Art 2002: Proceedings of the 7th International Conference on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Antwerp, Belgium, 2–6 June 2002

An account of the accession ceremony of Aldfrith of Northumbria involved whelk-dyed cloth, although this may simply be a poetic echo of Roman ceremonies. Another example involves an account of valuable textiles brought to England by of Ripon.


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time